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We examine the integral properties of freely decaying homogeneous
magnetohydrodynamic (MHD) turbulence subject to an imposed magnetic field B0

at low-magnetic Reynolds number. We confirm that, like conventional isotropic
turbulence, the fully developed state possesses a Loitsyansky-like integral invariant,
in this case I// = −

∫
r2

⊥〈u⊥ · u′
⊥〉 dr , where 〈u(x) · u(x + rc)〉 = 〈u · u′〉 is the usual two-

point velocity correlation and the subscript ⊥ indicates components perpendicular
to the imposed field. The conservation of I// for fully developed turbulence places a
fundamental restriction on the way in which the integral scales can develop, i.e. it
implies u2

⊥�4
⊥�// ≈ constant where u⊥, �⊥ and �// are integral scales. This constraint

can be used to estimate the evolution of u⊥(t; B0), �⊥(t; B0) and �//(t; B0), and these
theoretical decay laws are shown to be in good agreement with numerical simulations.

1. Introduction
1.1. The governing equations

We are interested in the turbulent motion of a conducting fluid which evolves in
the presence of an imposed magnetic field B0. Such flows are important in the
metallurgical industry, where magnetic fields are routinely used to control the motion
of liquid metals, in geodynamo theory, and in astrophysics (Davidson 1999, 2004).
For simplicity we shall take the fluid to be incompressible and Newtonian, so the flow
is governed by the Navier–Stokes equation and subject to the Lorentz force j × B,
where j is the current density and B is the total magnetic field, B = B0 + b. Here b
is the field associated with the induced currents through Ampère’s law, ∇ × b =μ j ,
where μ is the permeability of free space.

It is conventional to characterize the behaviour of magnetohydrodynamic (MHD)
turbulence using two dimensionless groups:

Rm =
u�

λ
= σμu�, (1.1)

N =
σB2

0�

ρu
=

�/u

τ
, (1.2)

where u and � are the integral scales of the turbulent motion, ρ the fluid density, σ

the electrical conductivity, λ=(σμ)−1 the magnetic diffusivity and τ =(σB2
0/ρ)−1 the
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Joule damping time. The so-called interaction parameter N provides one measure of
the relative strengths of the Lorentz and inertial forces, while the magnetic Reynolds
number Rm measures the relative importance of the diffusion and convection of
magnetic field lines (see e.g. Roberts 1967).

When Rm is small, i.e. the fluid is a relatively poor conductor, the currents induced
by motion across the imposed magnetic field are also small. In such a situation, it is
readily confirmed that |b| � |B0|, while Ohm’s law, j = σ (E + u × B), simplifies to

j = σ (−∇ψ + u × B0), (1.3)

where E is the electric field and ψ the electrostatic potential. Evidently, j is now
uniquely determined by the two expressions ∇ · j = 0 and ∇× j = σ (B0 · ∇)u. Virtually
all terrestrial MHD satisfies Rm � 1, with the exception of the geodynamo, and this
is the regime which is of particular interest in this paper. When Rm is small the
solenoidal part of the Lorentz force per unit mass F is a linear functional of u,
according to

∇2 F = − 1

ρ
∇ × ∇ × ( j × B0) = − 1

ρ
∇ × (B0 · ∇ j ) = −σ

ρ
(B0 · ∇)2u,

which we can rewrite as

F = −σ

ρ
∇−2(B0 · ∇)−2u, (1.4)

where ∇−2 is a symbolic operator defined via the Biot–Savart law. Our governing
equations are then

∂u
∂t

+ u · ∇u = −∇(p/ρ) − σ

ρ
∇−2(B0 · ∇)2u + ν∇2u, ∇ · u = 0.

We are interested in freely decaying statistically axisymmetric MHD turbulence and
our aim is to characterize the behaviour of the large scales. It is well known that such
turbulence becomes anisotropic as the large eddies elongate in the direction of the
imposed magnetic field through Alfven wave propagation. So it is natural to ask how
u2, �// and �⊥ evolve as a function of time, and how this evolution depends on the
magnitude of B0, and hence on N. Here the subscripts // and ⊥ indicate directions
parallel and perpendicular to the imposed field B0, with �// and �⊥ defined by

�// =
〈
u2

//

〉−1
∫ ∞

0

〈u//(x)u//(x + r ê//)〉 dr,

�⊥ =
〈
u2

⊥
〉−1

∫ ∞

0

〈u⊥(x)u⊥(x + r ê⊥)〉 dr,

where ê// and ê⊥ are unit vectors and u⊥ is any component of u which is perpendicular
to B0.

We shall propose explicit predictions for u2(N; t), �//(N; t) and �⊥(N; t) and then
test these predictions against direct numerical simulations (DNS) of the Navier–
Stokes equation, modified to incorporate the Lorentz force, performed in large
computational domains. A recurring theme throughout the paper is the essential role
played by angular momentum conservation, as this provides the key to determining
the behaviour of u2, �// and �⊥.

1.2. The role of angular momentum conservation in homogeneous MHD turbulence

The importance of angular momentum conservation for homogeneous MHD
turbulence was first pointed out by Davidson (1997). It is useful to summarize briefly
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the arguments here, partly to set the scene for the rest of the paper, and partly in order
to emphasize the uncertainties inherent in the earlier analysis. Following Davidson
(1997), we start with inhomogeneous, rather than with homogeneous, turbulence, and
with a thought experiment.

Suppose our conducting fluid is held in a large, insulated, spherical domain of
radius R. A uniform field B0 is imposed on the fluid which, at t = 0, is set into
turbulent motion. Although we are primarily interested in the case of low Rm, we
shall start by taking both N and Rm to be of arbitrary size. The Reynolds number,
on the other hand, is taken to be large, Re = u�/ν � 1, and the flow domain to be
big, in the sense that R � �.

For t > 0 the energy of the turbulence (kinetic energy plus magnetic energy) decays,
partly through viscous stresses and partly through Joule dissipation, j 2/σ . However,
this decay is subject to a powerful constraint: that of angular momentum conservation.
Let H be the global angular momentum of the fluid, H =

∫
V

x × u dV , and T the
net torque associated with the Lorentz force,

T =

∫
V

x × ( j × b) dV +

∫
V

x × ( j × B0) dV .

Now a closed system of currents cannot produce any net torque when it interacts with
its self-field b and so the first integral is zero. The second integral can be rewritten
using the identity

2x × ( j × B0) = (x × j ) × B0 + j · ∇(x × (x × B0)), (1.5)

the fact that j is solenoidal, and that j · dS = 0, to yield

T =
1

2

∫
V

(x × j ) dV × B0 = m × B0, (1.6)

where m is the net dipole moment associated with j . It follows that, if we neglect the
viscous torque on the outer boundary, which is valid for times much greater than �/u

when R � �, then the component of H parallel to B0 is conserved, H// = constant.
Moreover, it can be shown (Davidson 2004, pp. 533–534) that the continual destruction
of energy, subject to the constraint of H// =constant, inevitably leads to a two-
dimensionalization of the flow orientated by the mean field, B0. This prediction holds
for any value of Rm and is consistent with energy spreading along the mean field lines
through Alfven wave propagation.

The behaviour of the components of H normal to B0 can also be predicted, at
least for the particular case of low-Rm turbulence. That is, (1.3) can be combined
with (1.5), but with j in (1.5) replaced by u, to evaluate the dipole moment defined
by (1.6):

m =
σ

2

∫
∇ × (ψx) dV +

σ

2

∫
x × (u × B0) dV =

σ

4

∫
(x × u) dV × B0.

(The integral involving ψ converts to a surface integral which is zero for any spherical
surface.) Evidently m = (1/4)σ H × B0, from which T = −(1/4)σB2

0 H⊥. It follows that,
since there is no net torque associated with either pressure or inertial forces,

dH
dt

= − H⊥

4τ
, (1.7)

and hence

H// = constant (any N, any Rm) (1.8)



298 N. Okamoto, P. A. Davidson and Y. Kaneda

and (Davidson 1995)

H⊥ = H⊥(0) exp(−t/4τ ) (any N, lowRm). (1.9)

Note that the angular momentum H does not depend on the choice of origin as the
integral of u is zero for a closed domain.

So far we have considered inhomogeneous turbulence. However, it turns out that
expression (1.8) is also potentially important for homogeneous MHD turbulence. To
see why, we must consider Landau’s analysis of conventional, isotropic turbulence
(B = 0).

Landau showed that the net angular momentum of a cloud of turbulence evolving
in a large, closed sphere (R � �) can be related to the two-point velocity correlation,
〈u(x) · u(x + r)〉 = 〈u · u′〉, as follows. Noting that u · dS = 0 on |x| = R, we have

H2 =

∫
V

x × u dx ·
∫

V

x ′ × u′ dx ′ =

∫ ∫
(x ′ − x)2u · u′ dx ′ dx, (1.10)

and on ensemble averaging this yields

〈
H2

〉
=

∫
V

[
−

∫
V ∗

r2 〈u · u′〉 dr
]

dx, (1.11)

where r = x ′ − x and u′ = u(x ′). Note that the shape of V ∗ depends on the location of
x within V. Landau then made the crucial assumption that all two-point correlations,
〈uiu

′
j 〉, fall off rapidly (say exponentially) with separation |r|, and on a scale of �, so

that only the thin layer of turbulence close to the surface |x| =R is aware of that
boundary. In such a case we might expect that the bulk of the turbulence will behave
as if it were isotropic. Moreover, we might ignore the contribution to 〈H2〉 which
comes from the thin layer of anisotropic turbulence adjacent to |x| = R. We can then
treat 〈u · u′〉 in (1.11) as isotropic. We can also ignore far-field contributions to the
inner integral in (1.11), which allows us replace V ∗ by V∞, indicating an integration
over all r . If all of this is true, then we have

〈
H2

〉
≈

∫
V

[
−

∫
V∞

r2 〈u · u′〉 dr
]

dx, � � R, (1.12)

and in the limit of R/� → ∞, this yields (Landau & Lifshitz 1959)

〈
H2

〉/
V = −

∫
V∞

r2 〈u · u′〉 dr, (1.13)

The integral on the right-hand side is known as Loitsyansky’s integral, which we shall
denote by I.

So far we have discussed only kinematics. We now turn to dynamics. If, once again,
we ignore the viscous torque on the outer boundary, we have

〈
H2

〉
/V = −

∫
V∞

r2 〈u · u′〉 dr = I = constant (1.14)

(isotropic turbulence),

a result which should apply to homogeneous isotropic turbulence.
Actually, as pointed out by Monin & Yaglom (1975), this derivation of

I = −
∫

V∞

r2 〈u · u′〉 dr = constant (1.15)
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is not rigorous because it is not at all clear that it is legitimate to ignore the
contribution to 〈H2〉 that comes from the thin layer of fluid adjacent to the boundary.
This is the case even if 〈uiu

′
j 〉∞ falls off rapidly with |r |. (Here the subscript ∞ indicates

|r | → ∞.) However, it turns out to be possible to use angular momentum conservation
in a slightly different way to establish (1.15) in a rigorous fashion, assuming of course
that there is a rapid fall-off of 〈uiu

′
j 〉∞ (Davidson 2009). In addition, under the same

assumption about 〈uiu
′
j 〉∞, which in turn requires the triple correlations to decay

rapidly, it is possible to deduce (1.15) directly from the Kármán–Howarth equation.
Let us now apply the same logic to MHD turbulence. From (1.8) we might expect

that (Davidson 1997)

〈
H2

//

〉/
V = −

∫
V∞

r2
⊥ 〈u⊥ · u′

⊥〉 dr = I// = constant (1.16)

(axisymmetric turbulence, any N, any Rm).

Note that, as emphasized in Davidson (2004, p. 542), (1.16) applies equally to
low- and high-Rm turbulence, and so is relevant to both terrestrial and astrophysical
MHD, and indeed there is some support for (1.16) in the high-Rm simulations of
Bigot, Galtier & Politano (2008). The would-be invariant of (1.16) also holds in
rotating and stratified turbulence (Davidson 2004, 2009). However, as for its isotropic
counterpart, (1.16) is not rigorous because it pre-supposes that the thin layer of fluid
near the boundary makes no significant contribution to 〈H2〉 in the limit of R/� → ∞.
Worse, it can be valid only if the two-point double correlations, 〈uiu

′
j 〉, fall off rapidly

enough with separation |r |, and it is by no means obvious that this should be the
case. Indeed, ever since Batchelor & Proudman (1956), it is often argued that, in
isotropic turbulence, 〈uiu

′
j 〉∞ and 〈uiuju

′
k〉∞ fall off as power laws: 〈uiu

′
j 〉∞ ∼ r−6 and

〈uiuju
′
k〉∞ ∼ r−4. If this is indeed the case, then the Kármán–Howarth equation tells

us that I in (1.15) is not conserved (see (1.36)). Since (1.15) is in doubt, so too is (1.16).
All in all, it would seem that the validity or otherwise of (1.16) is far from clear-cut.

Consequently, we shall adopt the position that (1.16) is merely suggestive, its validity
to be assessed through a comparison with the results of the DNS.

1.3. Decay laws for MHD turbulence at low Rm

Kolmogorov (1941) used the alleged invariance of I in isotropic turbulence to predict
the rate of decay of energy. Let us define u via the expression u2 = (1/3)〈u2〉. Since
the large scales in isotropic turbulence are self-similar when scaled on u and �, (1.15),
which is dominated by the large scales, demands

u2�5 = constant. (1.17)

This may be combined with the empirical (but well-established) law

du2

dt
= −α

u3

�
, α = constant, (1.18)

to give

u2

u2
0

=

[
1 +

7α

10

(
u0t

�0

)]−10−7

, (1.19)

�

�0

=

[
1 +

7α

10

(
u0t

�0

)]2/7

, (1.20)
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where the dimensionless constant α is of the order of unity and u0 and �0 are the
initial values of u and �. Although the alleged invariance of I has been hotly disputed,
these decay laws, as well as the prediction that I is constant, are well supported by
DNS in large computational domains (Ishida, Davidson & Kaneda 2006), provided
the turbulence is allowed some time to become fully developed.

The analogous decay laws for homogeneous low-Rm MHD turbulence are set out
in Davidson (2001, p. 253), and in more detail in Davidson (2004, pp. 543–544). Let
us make the assumption that (1.16) is indeed valid. Then the analogue of (1.17) is,
from (1.16),

u2�4
⊥�// = constant, (1.21)

and the corresponding energy equation is

∂

∂t

1

2

〈
u2

〉
= −ν

〈
ω2

〉
−

〈
j 2

〉
/ρσ, ω = ∇ × u. (1.22)

(Note that the magnetic energy density, 〈b2/2ρμ〉, is of order NRm〈u2〉, and so may
be neglected in the low-Rm approximation.) The viscous dissipation is now modelled
in the usual way, as ν〈ω2〉 ∼ αu3

/
�⊥, while the magnitude of the Ohmic dissipation

can be estimated from ∇ × j = σ (B0 · ∇) u, which yields〈
j 2

〉
ρσ

∼
(

�⊥

�//

)2
〈
u2

〉
τ

=
β

2

(
�⊥

�//

)2
〈
u2

〉
τ

, (1.23)

for some coefficient β which is of the order of unity. (It can be shown that β = 2/3
for isotropic turbulence.) Thus, in Davidson (2001, 2004) the energy equation is
modelled as

du2

dt
= −α

u3

�⊥
− β

(
�⊥

�//

)2
u2

τ
, (1.24)

where, as before, u2 = (1/3)〈u2〉, and the coefficients α and β , defined by

α =
2ν

〈
ω2

〉
3u3/�⊥

(1.25)

and

β =
2
〈

j 2
〉/

ρσ

(�⊥/�//)2〈u2〉
/
τ

, (1.26)

are treated as constants of order unity. Note that the ratio of Ohmic to viscous
dissipation is of order N. Note also that the modelling of the viscous term in (1.24) is
unlikely to be accurate when N is large and the flow strongly anisotropic. However,
the viscous dissipation is relatively unimportant in such cases, so this does not present
a problem.

In the limit of N = 0 we recover (1.19) and (1.20) from (1.21) and (1.24). For
N → ∞, on the other hand, inertia is negligible and our system reduces to

du2

dt
= −β

(
�⊥

�//

)2
u2

τ
, u2�4

⊥�// = constant. (1.27)

It is well known that �⊥ remains essentially constant during the decay of high-N
turbulence, and so (1.27) integrates to give

u2

u2
0

=

[
1 +

2βt

τ

]−1/2

,
�//

�0

=

[
1 +

2βt

τ

]1/2

, (1.28)
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scalings which may also be obtained by direct integration of the linear equation
(Moffatt 1967)

∂u
∂t

= −∇
(

p

ρ

)
− 1

τ
∇−2 ∂2

∂x2
//

u. (1.29)

For intermediate values of N, however, there is a problem as (1.21) and (1.24) have,
between them, three unknowns: u2, �// and �⊥. To close the system Davidson (2001)
proposed using

d

dt

(
�//

�⊥

)2

=
2β

τ
, (1.30)

which is exact for N → 0 and N → ∞, and may be thought of as an interpolation
formula for intermediate N. If we adopt (1.30), then (1.24) integrates to give

u2

u2
0

=

[
1 +

7α

15β

(
t̂3/4 − 1

)
N0

]−10/7

t̂−1/2, (1.31)

�⊥

�0

=

[
1 +

7α

15β

(
t̂3/4 − 1

)
N0

]2/7

, (1.32)

�//

�0

=

[
1 +

7α

15β

(
t̂3/4 − 1

)
N0

]2/7

t̂1/2, (1.33)

where N0 is the initial value of N and t̂ = 1 + 2βt/τ (Davidson 2004). It is readily
confirmed that (1.19), (1.20) and (1.28) may be recovered from (1.31)–(1.33) in the
appropriate limits. Moreover, for the particular case of N0 = 7α/15β , we obtain the
simple power laws

u2 ∼ u2
0 t̂

−11/7, �// ∼ �0 t̂
5/7, �⊥ ∼ �0 t̂

3/14. (1.34)

1.4. Uncertainties and questions

There are at least four unjustified approximations inherent in (1.31)–(1.33). First,
the model treats α and β as constant during the decay. In practice, however, these
coefficients could be sensitive to the degree of anisotropy of the turbulence and, since
this grows with time, we might anticipate that α and β will vary throughout the
decay. Second, there is no formal justification for the heuristic equation (1.30), except
that it holds for small and large N. Would we really expect

C =
d

dt

(
�//

�⊥

)2
/

2β

τ
(1.35)

to be constant and equal to unity for all N0 and all t? We might classify these
first two approximations as issues of modelling. The third problem, however, is more
fundamental. The move from the inhomogeneous prediction (1.8) to the homogeneous
expression (1.16), which mimics Landau’s analysis of isotropic turbulence, rests
crucially on the assumption that 〈uiu

′
j 〉(r) decays rapidly (say exponentially) with

separation |r |. If this is not the case then (1.16) is suspect, (1.21) cannot be defended,
and predictions (1.31)–(1.33) must be abandoned. The fourth (and final) uncertainty
relates to self-similarity. To establish (1.21) from (1.16) we require that the large scales
are self-similar, at least in some approximate sense. While there is ample evidence
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that this is the case in conventional hydrodynamic turbulence, it is less certain that
this is so in MHD, where the evidence is more scant.

One of the purposes of this paper is to probe the validity of these four
approximations, and hence test the accuracy of predictions (1.31)–(1.33). We shall
return to the issues of whether or not α, β and C are really constants, and whether
the large scales are self-similar, when we examine the numerical data in § 3. In this
section we focus on the more fundamental issue of whether or not 〈uiu

′
j 〉(r) is likely

to decay sufficiently rapidly with |r | for (1.16) to be a good approximation. To this
end we first consider the simpler case of conventional isotropic turbulence (B = 0),
which is well documented.

Here integration of the Kármán–Howarth equation yields

dI

dt
= 8π

[
u3r4K(r)

]
∞, (1.36)

where u3K(r) = 〈u2
x(x)ux(x + r êx)〉 is the usual longitudinal correlation function (see

e.g. Davidson 2004). So the fate of I depends crucially on the behaviour of 〈u2
xu

′
x〉∞.

Now Batchelor & Proudman (1956) showed that the long-range pressure forces in
homogeneous turbulence are capable of establishing long-range pressure–velocity
correlations of the form 〈uiujp

′〉∞ ∼ r−3. That is, a fluctuation in u at a point x
sets up pressure waves (which travel infinitely fast in an incompressible fluid) and
inverting the Poisson equation

∇2p = −ρ
∂2uiuj

∂xi∂xj

(1.37)

shows that the resulting pressure fluctuations fall off from the source as p′ ∼ r−3,
leading to 〈uiujp

′〉∞ ∼ r−3. Since the triple correlations are governed by an equation
of the form

ρ
∂

∂t
〈uiuju

′
k〉 = − ∂

∂rk

〈uiujp
′〉 + · · · , (1.38)

we might expect 〈uiuju
′
k〉∞ to fall as 〈uiuju

′
k〉∞ = cijkr

−4. The Kármán–Howarth
equation then demands that 〈uiu

′
j 〉∞ ∼ dij r

−6, where cijk and dij are dimensional pre-
factors. This is enough to suggest that the right-hand side of (1.36) is non-zero and I
time-dependent, in direct contravention of (1.15).

In summary, then, the non-local nature of the pressure equation, p/ρ =
−∇−2[∂2uiuj/∂xi∂xj ], is enough to set up long-range triple correlations, 〈uiuju

′
k〉∞ =

cijkr
−4, whose strengths are, in principle, sufficient to make I time-dependent. The

same triple correlations also induce long-range double correlations, 〈uiu
′
j 〉∞ ∼ dij r

−6,
which call into question the validity of Landau’s derivation of (1.15). However, it is
important to keep in mind that there is no rigorous theory which can predict the
magnitude of the pre-factors cijk and dij . Moreover, the numerical simulations of
Ishida et al. (2006) show that, once the turbulence is fully developed, these pre-factors
are extremely small, so that, to within a reasonable degree of accuracy, one recovers
the classical predictions of I =constant and u2 ∼ t−10/7. (During an initial transient, I
is observed to be time-dependent in these simulations, but this probably an artifact
of the somewhat artificial initial conditions used in the computations, i.e. random
phases in the Fourier modes.)

Let us now return to the case of low-Rm MHD turbulence. As before, the
non-local pressure force is capable of establishing triple correlations of the form
〈uiuju

′
k〉∞ = cijkr

−4. This time, however, the turbulence is anisotropic and so the
generalized Kármán–Howarth equation suggests 〈uiu

′
j 〉∞ ∼ r−5, rather than the r−6
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fall predicted for isotropic turbulence. (Symmetry kills off the r−5 term in isotropic
turbulence.) However, the situation is more complicated in MHD turbulence, since
J is also a non-local function of u, i.e. ∇ × J = σ (B0 · ∇) u, which yields a non-local
Lorentz force,

F = −σ

ρ
∇−2

[
(B0 · ∇)2 u

]
= −1

τ
∇−2 ∂2u

∂x2
//

. (1.39)

The governing equation for 〈uiu
′
j 〉(r, t) is then

∂

∂t

〈
uiu

′
j

〉
= ∇ ·

[
〈uuu′〉 , 〈pu′〉

]
− 2

τ

∂2

∂r2
//

∇−2
〈
uiu

′
j

〉
, (1.40)

or equivalently,

∂

∂t

〈
uiu

′
j

〉
= ∇ ·

[
〈uuu′〉 , 〈pu′〉

]
+

1

2πτ

∂2

∂r2
//

∫ 〈
uiu

′
j

〉
(r∗)

|r − r∗| dr∗. (1.41)

Here ∇ · [〈uuu′〉, 〈pu′〉] represents the conventional inertial and pressure terms in the
Kármán–Howarth equation,

∇ ·
[
〈uuu′〉 , 〈pu′〉

]
=

∂

∂rk

[〈
uiuku

′
j

〉
−

〈
u′

ju
′
kui

〉]
+

∂

∂ri

〈
pu′

j

〉
− ∂

∂rj

〈p′ui〉. (1.42)

Expanding the integral on the right-hand side of (1.41), and using ∇ · u = 0, leads to
far-field terms of order r−5, and so we have (Davidson 1997)

∂

∂t

〈
uiu

′
j

〉
∞ =

[
∇ ·

(
〈uuu′〉 , 〈pu′〉

)]
∞ + O(τ−1r−5). (1.43)

In summary, then, there are two potential sources of long-range double correlations,
〈uiu

′
j 〉∞. On the one hand the non-local pressure fluctuations can lead to long-range

triple correlations, 〈uiuju
′
k〉∞ = cijkr

−4, and hence to 〈uiu
′
j 〉∞ ∼ d

(p)
ij r−5, where the time

derivatives of the d
(p)
ij are dependent on the cijk . On the other hand, the non-local

dependence of J on u leads directly to 〈uiu
′
j 〉∞ ∼ d

(J )
ij r−5, an effect that bypasses the

triple correlations. The combination of the two processes yields〈
uiu

′
j

〉
∞ ∼

[
d

(p)
ij + d

(J )
ij

]
r−5 = dij r

−5, (1.44)

where dij = d
(p)
ij + d

(J )
ij . Note that d

(p)
ij and d

(J )
ij are fundamentally different, in that

d
(J )
ij , or at least its time derivative, is perfectly deterministic (it can be determined

from expanding the integral in (1.41)), whereas there is no rigorous theory which can
predict the magnitude of the coefficients cijk , and hence the magnitude of the d

(p)
ij .

Note also that, in isotropic turbulence, the Kármán–Howarth equation tells us
that the conditions under which the long-range triple correlations are weak are
usually the same as those in which the long-range double correlations are small.
However, this is not, in general, true in MHD turbulence. That is, we have
〈uiu

′
j 〉∞ ∼ [d (p)

ij + d
(J )
ij ]r−5 = dij r

−5, where the time derivatives of the d
(p)
ij are determined

partly by the unknown cijk . So the conditions under which the 〈uiu
′
j 〉∞ vanish are not,

in general, the same as those in which the 〈uiuju
′
k〉∞ vanish. Indeed, if we want all the

coefficients dij to be zero, and hence 〈uiu
′
j 〉∞ < O(r−5), we require that certain of the

cijk are ‘non-zero’. Clearly we must exercise caution in our handing of the long-range
effects in MHD turbulence.
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The potentially slow fall-off of 〈uiu
′
j 〉∞ and 〈uiuju

′
k〉∞ has three important

consequences. First, it calls into question the convergence of integrals of type I//. In
fact, it turns out that, if 〈uiu

′
j 〉∞ ∼ r−5, then this integral is conditionally convergent,

and converges if the integrand is evaluated over a large sphere whose radius is
allowed to recede to infinity (Batchelor & Proudman 1956; Davidson 1997). However,
the fact that I// is only conditionally convergent means that the spectral tensor, Φij (k),
which is the transform of 〈uiu

′
j 〉(r), is non-analytic at k= 0, with ∂2Φij

/
∂kn∂km being

ill-defined at k=0 (Batchelor & Proudman 1956). Second, since the slow decline
of 〈uiuju

′
k〉∞ ∼ r−4 can lead to a time-dependence of I in isotropic turbulence (see

(1.36)), the same triple correlations could, in principle, induce a time-dependence of
I// in MHD turbulence. Third, since an 〈uiu

′
j 〉∞ ∼ r−6 fall-off in isotropic turbulence

is enough to call into question Landau’s derivation of (1.15), it is likely that the
potentially slower decline of 〈uiu

′
j 〉∞ ∼ r−5 in MHD turbulence will invalidate the

derivation of (1.16) from (1.8).
All in all, it would seem that the predicted conservation laws (1.16) and (1.21) are

unlikely to survive if there are significant long-range correlations, and if u2�4
⊥�// is not

conserved, then the decay laws (1.31)–(1.33) are bound to fail. However, it should be
remembered that the magnitude of the coefficients cijk and d

(p)
ij remains undetermined

by any rigorous theory. Moreover, in conventional isotropic turbulence certain cijk

and dij are found to be so small that, to a reasonable degree of accuracy, I =constant

and u2 ∼ t−10/7, at least in fully developed turbulence. Could it be that the appropriate
cijk and dij are also small in MHD turbulence? If so, there is the possibility that, in

fully developed turbulence, u2�4
⊥�// is indeed conserved, at least approximately, and

that (1.31)–(1.33) survive.
In this paper we explore these issues, but rather than start with the inhomogeneous

thought experiment which led to (1.8), and hence to (1.16), we stay within the
framework of strictly homogeneous turbulence. We start, in § 2, by exploring the
consequences of assuming that certain long-range correlations may be neglected. We
shall see that this leads us back to (1.21), and hence to (1.31)–(1.33), but with a
number of caveats. Next, we examine the results of numerical simulations performed
in very large computational domains. We shall see that, in fully developed turbulence,
u2�4

⊥�// is more or less constant, and that decay laws (1.31)–(1.33) are surprisingly
good approximations. It would seem, therefore, that the situation is similar to that
of conventional turbulence: the turbulence evolves so as to minimize certain long-
range correlations, so that a näıve theory based on the absence of such long-range
interactions fairs unexpectedly well.

2. The behaviour of the Loitsyansky-like integral I//

We now re-examine the behaviour of I// in MHD turbulence under the assumption
that 〈uiu

′
j 〉∞ decays rapidly with separation, i.e. 〈uiu

′
j 〉∞ <O(r−5). However, rather

than start with angular momentum conservation, and the inhomogeneous thought
experiment of § 1.2, we shall use the generalized Kármán–Howarth equation, which
allows us to stay within the framework of homogeneous turbulence.

Of course, we do not know a priori if 〈uiu
′
j 〉∞ will fall off faster than r−5, and indeed

(1.43) tells us that it is somewhat unlikely. However, our experience with isotropic
turbulence suggests that, after an initial transient, the pre-factors which multiply the
leading-order far-field terms can be very small (Ishida et al. 2006), so small that
they may be ignored for many purposes. So it makes sense to at least explore the
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consequences of ignoring the 〈uiu
′
j 〉∞ ∼ O(r−5) tail, and then compare the resulting

predictions with the results of numerical experiments.

2.1. A real-space analysis of I//

Let us suppose that B0 points in the z-direction. Then we may write I// as

I// = −
∫ [

r2
x

〈
uyu

′
y

〉
+ r2

y 〈uxu
′
x〉

]
dr. (2.1)

Note that we have omitted integrals of the form
∫

[r2
x 〈uxu

′
x〉]dr from (2.1). This is

justified because the integrand can be expressed as a divergence in r , which integrates
to zero. That is, r2

xu
′
x = (1/3)∇r · (r3

x u′) and so, if S is a large spherical surface, we
have∫ [

r2
x 〈uxu

′
x〉

]
dr =

〈
ux(r = 0)

∫
r2
xu

′
xdr

〉
=

1

3

〈
ux(r = 0)

∮
S

r3
x u′ · dS

〉
, (2.2)

which vanishes if u and u′ decorrelate faster than r−5.
Now the generalized Kármán–Howarth equation is, from (1.40),

∂

∂t

〈
uiu

′
j

〉
= ∇ ·

[
〈uuu′〉 , 〈pu′〉

]
− 2

τ
∇−2 ∂2

∂r2
z

〈
uiu

′
j

〉
, (2.3)

and we know from Batchelor (1953) that, in the absence of the Lorentz force, integrals
of the type

I = −
∫

r2 〈u · u′〉 dr, and I// = −
∫

r2
⊥ 〈u⊥ · u′

⊥〉 dr,

are invariants when the triple correlations decay faster than O(r−4). Although
Batchelor’s analysis is performed in Fourier space, its results can be confirmed in
real space by integrating the second moments of (2.3) over r and rewriting the terms
involving ∇ · [〈uuu′〉, 〈pu′〉] as divergences in r , which disappear upon integration.
However, when 〈uiuju

′
k〉∞ ∼ r−4, these divergences do not vanish on integration, and

so the integrals I and I// become time-dependent.
Since the influence of the triple correlations on I and I// are understood, at least

qualitatively, we now concentrate on the role played by the Lorentz force in (2.3). Let
the symbol [NL] indicate any term which involves the triple correlations, 〈uuu′〉, or
the pressure–velocity correlations, 〈pu′〉, i.e. any term which arises from the nonlinear
contributions to the Navier–Stokes equation. Then, from (2.3) we have

∂

∂t
∇2

〈
uiu

′
j

〉
= [NL] − 2

τ

∂2

∂r2
z

〈
uiu

′
j

〉
. (2.4)

Multiplying by r2
x r

2
y then yields

2r2
⊥

∂

∂t

〈
uiu

′
j

〉
= [NL] + ∇ ·

[
〈uu′〉

]
, (2.5)

where ∇ · [〈uu′〉] indicates the divergence of terms involving 〈uiu
′
j 〉. Integrating over

all r , and assuming that 〈uiu
′
j 〉∞ decays faster than |r |−5, we obtain

d

dt

[
−

∫
r2

⊥
〈
uiu

′
j

〉
dr

]
=

∫
[NL] dr, (2.6)
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which confirms that the Lorentz force has no direct influence on I//. Moreover, we
know from conventional homogeneous turbulence that the integral on the right-hand
side of (2.6) is zero when certain triple correlations fall faster than O(r−4), and so
(2.6) yields

I// = constant if 〈uiuju
′
k〉∞ <O(r−4). (2.7)

The behaviour of I// in (2.7) is as expected: if certain long-range triple correlations
are weak, then I// = constant, whereas the long-range triple correlations envisaged by
Batchelor & Proudman (1956) will make I// time-dependent. In short, I// behaves just
like I in conventional isotropic turbulence.

2.2. A Fourier space analysis of I//

Similar conclusions can be reached by examining the equations in Fourier space.
Since the Fourier space interpretation will prove useful when we come to examine the
DNS, we briefly summarize the arguments here. Introducing the spectral tensor

Φij (k) = (2π)−3

∫ 〈
uiu

′
j

〉
(r) exp (−jk · r) dr, (2.8)

and expanding the exponential in a power series in k · r , we find

(2π)3Φij (k) =

∫ 〈
uiu

′
j

〉
dr − jkp

∫
rp

〈
uiu

′
j

〉
dr − 1

2

∫
(k · r)2

〈
uiu

′
j

〉
dr + O(k3).

(2.9)

The first term on the right-hand side may be converted into a surface integral, which
vanishes under the assumption that 〈uiu

′
j 〉∞ decays faster than r−3. The second term

also goes to zero if we restrict ourselves to i = j , since homogeneity then requires
〈uiu

′
j 〉(r) = 〈uju

′
i〉(−r) = 〈uiu

′
j 〉(−r), which tells us that the integrand is odd in r .

(Actually, the second integral is zero under less restrictive conditions, but that need
not concern us here.) Expanding (k · r)2 in the third integral we find, after a little
algebra,

32π3Φ⊥(k → 0) = −k2
⊥

∫
r2

⊥ 〈u⊥ · u′
⊥〉 dr − 2k2

z

∫
r2
z 〈u⊥ · u′

⊥〉 dr + O(k3) (2.10)

or, in terms of I//,

32π3Φ⊥(k → 0) = I//k
2
⊥ + I⊥k2

z , (2.11)

where

I⊥ = −2

∫
V∞

r2
z 〈u⊥ · u′

⊥〉 dr. (2.12)

In spectral space, then, we have the kinematic relationship

I// = Lim
k⊥→0

32π3Φ⊥(kz = 0, k⊥)

k2
⊥

. (2.13)

So far we have not had to invoke the restriction that 〈uiu
′
j 〉∞ <O(r−5). However, this

restriction is in fact implicit in (2.13) since, as we have seen, 〈uiu
′
j 〉∞ ∼ O(r−5) implies

that I// is only conditionally convergent, implying that its value may depend on the
way in which the boundary of the domain of integration recedes to infinity. Turning
now to dynamics, the transform of (2.3) is

∂Φij

∂t
= [NL] − 2

τ

k2
z

k2
Φij , (2.14)
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and if the inertial terms on the right-hand side can be ignored at O(k2), this yields

Φij (k, t) = Φij (t = 0) exp

[
−k2

z

k2

2t

τ

]
+ O(k3). (2.15)

(In the absence of long-range triple correlations, 〈uiuju
′
k〉∞ = cijkr

−4, the nonlinear
terms in (2.14) are of order k3; Batchelor 1953.) Note that (2.13) probably requires
that 〈uiu

′
j 〉∞decays as 〈uiu

′
j 〉∞ <O(r−5), but makes no assumption about the triple

correlations, whereas (2.15) assumes that the triple correlations decay rapidly with
separation, i.e 〈uiuju

′
k〉∞ <O(r−4), but makes no assumptions about the double

correlations.
One advantage of this spectral approach is that it brings out the relationship

between I//, and Φ⊥(k → 0). This will prove useful when examining the results of
the numerical simulations. To this end it is convenient to introduce the quantity J//,
defined by

J// = Lim
k⊥→0

32π3Φ⊥(kz = 0, k⊥)

k2
⊥

. (2.16)

Of course, provided 〈uiu
′
j 〉∞ < O(r−5), J// satisfies J// = I//, and we might expect

J// ≈ I// if certain dij in (1.44) are small. Moreover (2.15) yields

J// = constant, (2.17)

provided that 〈uiuju
′
k〉∞ < O(r−4), and we expect J// ≈ constant if certain cijk are

weak.
NowJ// ∼ u2�4

⊥�//, so that (2.17) plus self-similarity of the large scales allows us to
recover u2�4

⊥�// = constant. Thus (1.21), and hence the decay laws (1.31)–(1.33) can
be obtained from either I// =constant or J// = constant. We shall see that J// is much
easier to evaluate from the simulations than I//, because the integral I// converges
rather slowly and we quickly hit the finite size of the periodic domain. Thus we shall
place more emphasis on J// than on I// in our interpretation of the numerical results.

3. The numerical evidence
We now turn to the evidence of the numerical simulations. The questions we seek

to answer are as follows.
(i) Are I// and J// approximately constant in fully developed turbulence, as

predicted by (1.16) and (2.17)?
(ii) Are the large scales self-similar, so that the conservation of I// and J// translates

to u2�4
⊥�// = constant?

(iii) If u2�4
⊥�// is conserved in fully developed turbulence, are the other assumptions

in the decay model of Davidson (2001, 2004) reasonable approximations, i.e. are α, β

and C really constant once the turbulence matures?
(iv) If the answers to (i)–(iii) are yes, does MHD turbulence decay in accordance

with (1.31)–(1.33)?
Note that by ‘fully developed turbulence’ we mean turbulence that has largely

forgotten its initial conditions, which in any event are somewhat unphysical (i.e.
random phases of the Fourier modes).

The simulations reported here employ the spectral code described in Ishida et al.
(2006). The boundary conditions are periodic and the random initial conditions
were chosen from a Gaussian ensemble with 〈u2〉t=0 = 1. The prescribed initial
energy spectrum is isotropic and has the form E ∼ k4 exp[−2(k/kp)2], where kp is
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Run M kp Re(t = 0) N0 tmax/T kmax/kp

1 10243 40 362 7/60 300 12
2 10243 60 181 7/60 300 8
3 5122 × 1024 40 181 7/30 320 6
4 20483 80 181 7/30 256 12
5 10243 60 90 7/60 300 8

Table 1. Parameters in the simulations.

the wavenumber at which E(k, t = 0) is a maximum. Note that, with this choice of
E(t = 0), � is related to kp at t = 0 by � =

√
2π/kp , where � is defined in the usual

way as the integral of the longitudinal correlation function. The phase-shift method
was used for de-aliasing, in which the maximum wavenumber, kmax , of the retained
Fourier modes is about 21/2N/3. The minimum wavenumber is kmin = 1.

The details of the simulation are listed in table 1. Here M is the number of
Fourier modes in each direction, Re = u�⊥/ν, N0 is the initial value of the interaction
parameter, and time is normalized by the initial eddy turn-over time, defined as
T = 1/〈u2〉1/2

0 kp = 1/kp . Note that, if LBOX is the domain size, then kpLBOX = 2πkp ,
which implies that LBOX/� = (2π)1/2kp at t = 0. This corresponds to LBOX/� = 100–200
in our simulations.

In the hydrodynamic decay simulations of Ishida et al. (2006) it was found that
those runs whose initial value of Re exceeded 180 exhibited no dependence of u2(t)
and �(t) on Re, whereas those in which Re(t =0) was less than 100 did exhibit some
influence of Re on the behaviour of the large scales. Hence we might expect that
runs 1–4 will be indicative of high-Re turbulence, but that there should be some
influence of viscosity on the decay exponent for u2(t) in run 5. We shall therefore
focus for the most part on runs 1–4.

Let us start with the issue of whether or not (2.13), which requires 〈uiu
′
j 〉∞ < O(r−5),

provides reliable estimates of I//. Of course, in the light of (1.43), it is virtually certain
that there exists terms of order 〈uiu

′
j 〉∞ ∼ O(r−5). However, the question before us is

whether these are strong enough to cause a significant difference between J// and I//.
Figure 1(a) shows a comparison between I// and J// for run 4 at t/T = 112, where
I// was evaluated from the integral of 〈u⊥ · u′

⊥〉 in accordance with definition (1.16),
while J// was calculated using definition (2.16) and a best fit to the spectral data in the
range 0.07 <k⊥/kp < 0.1. Note that 〈u⊥ · u′

⊥〉 was obtained by Fourier-transforming
Φ⊥(k), which is shown in figure 1(b). The integral I// was evaluated in three different
ways; over a sphere of increasing radius, r, over a cylinder of volume 2πr3, and
over a cube of side 2r. All three are plotted in figure 1(a) as a function of kpr . It
can be seen that all three methods of evaluating I// appear to asymptote to J// for
kpr < 25 (i.e. r/�< 10.0), but the comparison is not conclusive because the integral
converges slowly and the periodicity of the domain starts to play a role for kpr > 25,
causing oscillations in the integrals. That is to say, for kpr > 25, which corresponds
to k/kp < 0.1, there are a limited number of Fourier modes contributing to Φ⊥(k),
and hence some statistical scatter in Φ⊥, as seen in figure 1(b). Thus, due to the lack
of a good statistical sample, the transform of Φ⊥, i.e. 〈u⊥ · u′

⊥〉, is subject to scatter
for r/�> 10.0, and it is this which, on integration, produces the oscillations in I// for
kpr > 25. It is important to note, however, that these oscillations have nothing to do
with the convergence properties of I//, but rather arise from the finite size of LBOX ,
i.e. from periodicity.
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Figure 1. (a) A comparison of I// and J// at t/T = 112 for run 4. (b) The spectrum Φ⊥(k)
from which 〈u⊥ · u′

⊥〉 was obtained.

The apparent convergence of I// to J// for kpr < 25 suggests that the properties of
I// are well behaved, despite the far-field terms, 〈uiu

′
j 〉∞ ∼ O(r−5). It should be noted,

however, that this is not true of other integrals of similar form. For example, the
convergence properties of I⊥ show a strong dependence on the shape of the domain
of integration and so are clearly influenced by the 〈uiu

′
j 〉∞ ∼ O(r−5) terms. In any

event, since the invariance of either J// or I// is enough to justify u2�4
⊥�// = constant

(assuming self-similarity applies), and J// is much easier to evaluate unambiguously
than I//, we shall focus on J// from now on.

Let us now consider the behaviour of J// as a function of time. Figure 2 shows
J//(t)/J//(0) and dJ///dt for runs 1–4, where J// is estimated from Φ⊥(k → 0) using
(2.16) and spectral data in the range 0.07 <k⊥/kp < 0.1. In runs 1–3 J// reaches a
constant value after an initial transient (i.e. for t > 70T ), whereas run 4 exhibits a
small but finite growth of J// at large times. However, figure 2(b) shows that this
growth in run 4 is small, and so we conclude that J// is indeed approximately constant
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Figure 2. Time-dependence of J// for runs 1–4: (a) J//(t)/J//(0), (b) (dJ///dt)(T/J//(0)).

after the transient, consistent with (2.17) and with the behaviour of I in isotropic
turbulence.

Given that J// is approximately constant for t > 70T , we now ask if
u2�4

⊥�// = constant in the same time interval, i.e. how good an approximation is
self-similarity of the large scales. The evolution of u2�4

⊥�// is shown in figure 3 for
the period 1 < t/T < 300, both in a linear plot and in log–log form. It can be seen
that, despite J// being more or less constant for t > 70T , u2�4

⊥�// rises slowly during
the same time period, showing that the large scales are not perfectly self-similar.
Nevertheless, we shall see shortly that this slow rise in u2�4

⊥�// is weak enough to
leave (1.31)–(1.33) good approximations to fully developed turbulence.
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Figure 3. The time-dependence of u2�4
⊥�// in runs 1–4 for 1 < t/T < 300: (a) linear plot,

(b) log–log plot.

The variations of �///LBOX and Re = u�⊥/ν with t/T are shown in figure 4. It can
be seen that �///LBOX < 0.08 in all cases, so that we might hope that the unphysical
boundary conditions (periodicity) do not unduly influence the simulations. On the
other hand, the values of Re become rather modest at large times, so there is the
possibility of finite-Reynolds-number effects. However, we shall see shortly that this
is probably not the case for runs 1–4.

Given that, after a transient, J// is indeed approximately constant, it seems
appropriate to investigate the decay model outlined in § 1.3. The additional model
assumptions, over and above J// = constant, are that α, β and C are all constant
in fully developed turbulence, with C = 1. Figure 5 shows the variation of α, β

and C for runs 1–4. It is reassuring that, after the usual transient, α and β

are indeed approximately constant and of order unity. The coefficient C, defined
by (1.35), is also reasonably constant at large times, though its value depends
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Figure 4. Time-dependence of (a) �///LBOX , (b) Re = u�⊥/ν, for runs 1–4.

somewhat on N0 and can differ significantly from unity. Thus we conclude that
the weakest ingredient in the model of Davidson (2001, 2004) is the heuristic
equation (1.30).

Also shown in figure 5 are the values of 7α/15βN0. This is included because, for
the particular value of N0 = 7α/15β , predictions (1.31)–(1.33) reduce to the simple
power laws u2 ∼ u2

0 t̂
−11/7, �// ∼ �0 t̂

5/7 and �⊥ ∼ �0 t̂
3/14. The values of 7α/15βN0 are

significantly different from unity, typically around 3–4. However, for t/T > 150, (1.31)
suggests that this departure from 7α/15βN0 = 1 should have only a modest effect on
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Figure 5. Time-dependence of α, β , 7α/15βN0 and C for runs 1–4.

the predicted behaviour of u2(t), and so we might still expect to see the power law
u2 ∼ u2

0 t̂
−11/7 in runs 1–4.

Figure 6(a) shows the local value of the computed exponent m(t) in the power
law estimate u2 ∼ u2

0(t/T )−m for runs 1–4. For large t/T the exponent does indeed
come close to the predicted value of 11/7. Figure 6(b) shows the same data for
runs 2 and 5. In run 5, where Re(t = 0) is somewhat low, the exponent m is
significantly larger than 11/7. This is consistent with the results of conventional
isotropic turbulence, where initial values of Re similar to that in run 5 produced
energy decay rates which were different to, and higher than, those for larger Re (Ishida
et al. 2006).

Figure 7 shows the compensated plots of u2/̂t−11/7, �///̂t
5/7 and �⊥/̂t3/14 versus

t/T in both linear and log–log form. The power-law dependencies of (1.34) should
correspond to plateaux in each of these figures and this is indeed observed for the
energy decay u2(t), although this is less convincing in the case of �// and �⊥. However,
the fact that the power laws (1.34) are not clear-cut for �// and �⊥ is associated, in
part, with the fact that 7α/15βN0 �= 1 in these runs, as we now show.

Figure 8 shows u2/u2
0, �///�0, and �⊥/�0, all normalized by the corresponding model

prediction in (1.31)–(1.33). In each case the compensated plots show clear plateaux
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0(t/T )−m. (a) Runs 1–4. (b) Runs 2 and 5. Run 5 is anomalous as Re is too low.

at large times (i.e. t > 70T ), giving strong support to predictions (1.31)–(1.33). The
fact that the plateaux are not equal to unity in figure 8(a) is because the energy lost
during the initial transient is not governed by (1.31).

All in all, it would seem that the model assumptions and predictions have
held up well, with the possible exception of the heuristic equation (1.30). The
final figure, figure 9, shows snapshots of the flow field in runs 1 and 2 at
t/T = 300. The vorticity and velocity fields are visualized in each case at the
threshold |ω| = 〈|ω|〉 + 3σ and|v| = 〈|v|〉 + 2σ ′, where σ and σ ′are the standard
deviation of |ω| and |v|, respectively. The anisotropic streaky structure of the
eddies is quite evident, particularly in the constant energy surfaces. Moreover, the
final value of �///LBOX ∼ 0.07 is consistent with a qualitative inspection of these
figures.
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1–4. The left- and right-hand columns show the same data, plotted in different formats.

4. Conclusions
We have seen that, despite the possibility of strong long-range correlations of

the form 〈uiuju
′
k〉∞ = cijkr

−4, the spectral quantity J// ∼ Φ⊥(kz = 0, k⊥)
/
k2

⊥ is more
or less conserved in fully developed MHD turbulence. This, in turn, suggests that
the Loitsyansky-like integral I// = −

∫
r2

⊥〈u⊥ · u′
⊥〉 dr is an invariant of the decay,

and also that u2
⊥�4

⊥�// ≈ constant in the fully developed state, though self-similarity
of the large scales is far from perfect. This lends support to the decay model of
Davidson (2001, 2004) which, subject to the additional assumptions that α and β are
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Figure 8. Computed histories of u2/u2
0, �///�0, and �⊥/�0, normalized by (1.31)–(1.33), in

both linear and log–log plots.

approximately constant, and that the interpolation formula (1.30) is a reasonable
approximation, predicts the decay laws (1.31)–(1.33) for u2(t; N0), �⊥(t; N0) and
�//(t; N0). The results of the numerical simulations are reasonably consistent with these
predictions.

There are many possible extensions to this study, the most obvious being to
consider high-Rm turbulence and MHD turbulence in the presence of a bulk
rotation or stratification. As noted in Davidson (2004, 2009), all of these systems
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possess the invariant given in (1.16), subject, of course, to the caveats outlined
in § 1.
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